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Abstract 

Tonal manipulation is commonly implemented in discrete 
imaging systems in order to improve the subjective appeal 
of results or to emulate some other device. The use of 
integer mathematics in its application, however, causes loss 
of detected intensity levels. The reduction of information 
content that this represents introduces noise into MTF 
measurements of discrete systems. 

A method to estimate a range in which the actual 
modulation exists from gamma corrected pixel values is 
presented. The models are compared with experimental 
data, the results discussed and conclusions drawn. 

Gamma Correction 

When the behaviour of an intended display system is 
known, the tone reproduction of the discrete acquisition 
device may be modified in order to achieve optimum 
objective tone reproduction for the combination.1 Known as 
gamma correction, the modification takes the form: 

V '= V γ C  (3) 

where �C = 1/�D. V is the original signal, V' the modified 
signal, �C, the value of correction and �D the display gamma. 
The effect of gamma correction upon the transfer function 
of a system is to yield approximately linear tone 

2-5reproduction as desired for optimum objective output. 
Subjectively preferred tone reproduction often differs to the 
objective ideal and depends upon the display medium, 

2-5viewing conditions and scene content. For example, it is 
suggested that � = 1.6 is optimum for viewing 
transparencies and � = 1.2 for photographic prints under 
normal conditions.5 In addition, the tone reproduction of the 
acquisition system will often not be linear and may be 
described using its own determined value of �. 

The tonal correction applied may be adjusted to take 
account of the above factors. The correction necessary may 
be calculated using: 

γγ C = T (4)
γ γA D

where �T is the target gamma and �A the value of the 
6acquisition system. For a system comprising of a digital 

camera, computer and CRT, the correction may be applied 
at any point before the physical display of the information. 

It should be noted that a number of commercially 
produced electronic stills cameras employ tonal shaping 
rather than gamma correction in order to simulate the 
transfer characteristics of other devices, e.g. photographic 
emulsion. Often this approach is implemented as a look-up 
table (LUT). In such a case the gamma model has little or 
no basis to describe such tone reproduction and generally 
yields a poor mathematical fit. A more appropriate 
description in such case is the LUT itself. For the purposes 
of simplification the use of a gamma model assumed 
throughout this work. 

Discrete Gamma Corrected Signals 

Most discrete imaging devices produced presently include 
gamma correction or tonal shaping to condition signals for 
use with various output devices. Whilst this poses few 
difficulties for analogue systems, its application in digital 
systems produces a loss of intensity levels due to the 
limitation of integer calculations.7,8 Output levels may not be 
used or alternatively have multiple mappings to input 
levels.8,9 Evidence of this occurs as stepping in the systems 
tone reproduction curve, Figure 1.6 
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Figure 1. Stepping introduced to the gamma corrected signal due 
to the use of integer mathematics for the values of gamma 
correction shown. 
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A common method to mitigate the loss of pixel values 
is to acquire images at an increased bitdepth and sub-sample 
to the required output bitdepth after performing gamma 
correction.7 Triantaphillidou, Jacobson and Ford have 
produced a computer routine to count remaining pixel 
values in gamma corrected discrete signals. The counting 
routine was compared with measurements of a 
commercially available 35mm film scanner and found to be 
accurate.7 

Mathematically, concatenated gamma correction and 
sub-sampling of a digital signal may be described by: 

 Q 
γ C  

GQ =  (5) 

 2
dQ −1

 × (2dG −1)
 

where dQ is the bitdepth of the quantized input, dG the 
bitdepth of the gamma corrected output, Q the input pixel 
value and GQ the output pixel value associated with that 
input. The parentheses,    , represent notation for a floor 
function. It is desired to examine the effect of gamma 
correction in isolation. The input signal, Q, therefore, is 
quantized as it has passed though the ADC before entering 
the gamma correction process. Thus, values

dQ 
of Q are 

restricted to positive integers between 0 and 2 −1. Also 
dQ and dG are restricted to positive integers greater than or 
equal to one in order to describe physically realisable 
systems. 

Linear Input Units 

There exist many applications in the field of image science 
that require a linearized signal for mathematical or other 
manipulation. Any imaging system that does not exhibit a 
linearly proportional relationship of input with output 
cannot be considered linear. In these instances, the accepted 
practice is to linearize the output signal by applying the 
inverse of the systems tone reproduction curve to convert 
the signal into linear input units. A number of references 
document the procedure which is well known. An overview 

10is given by Dainty. 
The approach works well for analogue systems, 

however, the described pixel value loss in discrete systems 
causes noise. Pixel values in the output are mapped to a 
number of levels in the input. It is impossible to correctly 
identify which input level gave rise to the output, Figure 2, 
and therefore only an linear input range may be calculated. 
Any measured output extrema which cannot be associated 
with a unique input value will cause ambiguity. 

Mathematical Development 

Calculation of Linear Input Range 
The ability to calculate the extent of linear input range 

for a given output pixel value enables the calculation of 
limits within which the actual MTF will exist. 
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Figure 2. A magnified portion of a gamma corrected signal 
showing the ambiguity caused when linearizing a digital signal. 
The output value of 5 is mapped to input pixel values of 36 to 39. 

For a given output pixel value, GQ, the linear input 
range may be described as extending from QMIN to QMAX, 
Figure 2. When the input range is described in the above 
manner, the following will be true for a real system: 

γ C 

GQ = 

 QMAX  ×(2dG −1) 

(6)
dQ

 2 −1  

As the minimum significant unit of the floor operation 
is one, the following is true: 

 
γ C 

 
QMAX  ×(2dG −1) 

− GQ < 1 (7)
dQ

 2 −1  

for GQ < 2
dQ −1 and therefore: 

γ C QMAX 
 2

dQ −1
 ×(2dG −1)< 1+ GQ (8) 

As dQ and dG are limited to positive integers greater than or 
equal to one, it is true that 2dG −1 ≥ 1 and 2dQ −1 ≥ 1. 
Dividing Equation 8 by 2dG −1and raising to the power of 
1/�C it is found: 

1 

 QMAX   1+ GQ 


γ C 

(9)


 2

dQ −1
 <  2

dG −1

dQFinally multiplying by 2 −1: 

1 

 1+ GQ γ C 

QMAX < 

 

2dG −1
 ×(2dQ −1) (10) 

QMAX is the maximum value of the input range that will give 
the output value GQ. The maximum value that QMAX may 
take is the RHS of the above equation. The above equation 
yields a continuous value of QMAX for a given value of GQ. It 
should be remembered that gamma correction in the 
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majority of digital acquisition systems operate on quantized 
signals, thus Q should be restricted to positive integer 
values. It is necessary, therefore to reduce QMAX to the 
nearest positive integer below the value calculated and thus 
it becomes: 

 1  
 1 + GQ γ C 

QMAX =  2
dG −1 

× (2dQ −1) 
−1 (11) 

  

for GQ ≤ 2dG −1. When GQ = 2dG −1,
dQQMAX = 2 −1 . The parentheses,    , represent a 

ceiling function and, as previous,    represent the use of a 
floor function in the following equations. 

The lower value of the input range may be denoted 
QMIN. It may be calculated by first considering the mapping 
of Q to GQ: 

 QMIN 
γ C  

GQ = 


 2

dQ −1
 ×(2dG −1)

 
(12) 

The lowest input value for a given output will occur when: 

 
γ C 

 
QMIN  ×(2dG −1) − GQ = 0 (13) 

 2
dQ −1  

Therefore solving: 

γ C 

GQ = 
 

QMIN  ×(2dG −1) (14)
 2

dQ −1 

QMIN may be found to be: 

1 

 G 
QMIN =  2

dG 

Q 

−1

γ C 

×(2dQ −1) (15) 

The solution also needs to be restricted to positive 
integers. The calculated value above is less than or equal to 
the minimum value of the input range and thus the 
calculation of QMIN becomes: 

 1 
G 

QMIN = 



 

2dG 

Q 

−1 




γ C 

×(2dQ −1) 
(16) 

  

QMAX and QMIN may only be calculated for values of GQ that 
exist in a gamma corrected output. Attempting to calculate 
the input range of an output value that does not exist will 
result in a breakdown of the formulae. 

The numerical range of input values, �, associated with 
a given output value, GQ, may be calculated: 

α = QMAX − QMIN (17) 
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gamma corrected signal values. 

The number of input values, �, that will give rise to an 
output value is calculated using: 

η = QMAX − QMIN +1 (18) 

Plotting a graph of � against GQ gives an indication of where 
the majority of uncertainty lies in the gamma corrected 
signal, Figure 3. 

The figure illustrates that if the value of gamma 
correction used is above one, the majority of the noise lies 
in lower pixel values. Conversely, if the value of gamma 
correction is below one noise lies in the upper pixel values 
though to a lesser degree. Gamma correction of one 
effectively represents no modification of the signal and thus 
no noise is introduced. 

Effect on MTF Determination 

As the transfer function of the system is commonly used to 
convert the measured signal into linear input units, 
uncertainty in estimated input pixel values must be 
considered as an uncertainty in the calculated modulation 
transfer function. Establishing the variation in input values 
of maxima and minima will enable the calculation of a 
range in which the actual modulation will exist. Thus, the 
effect of gamma correction on MTF may be evaluated. For 
gamma corrected values of maxima and minima, MG and 
NG, of a sinusoidal signal, it is possible to calculate the 
range of input values that could have given rise to these 
using the equations above: 

 1  
MAXM Q =  

1+ M G 
γ C ×(2dQ −1)

 
−1 (19)

 2
dG −1 

  

 1  
MINM Q =  M G 

γ C × (2dQ −1)
 

(20)
 2

dG −1
  
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where MAX

QM and MIN
QM are 

minimum input values resulting in MG. The maximum and 
minimum input values resulting in NG are MAX

QN and 
MIN
QN . 

 The range in which the actual modulation is contained 
may be calculated by evaluating maximum and minimum 
modulation possible, MAX

QMTF and MIN
QMTF :11 

MIN
Q

MAX
Q

MIN
Q

MAX
QMAX

Q NM

NM
MTF

+
−

=     (23) 

MAX
Q

MIN
Q

MAX
Q

MIN
QMIN

Q NM

NM
MTF

+
−

=     (24) 

 
As QMAX and QMIN represent the extremes of input range 

that may result in the gamma corrected output, GQ, 
MAX

QMTF and MIN
QMTF represent the extremes of input 

modulation the may result in the measured gamma corrected 
signal modulation. Due to the use of the ceiling function in 
Equations 19 and 22, these expressions cannot be simplified 
further. Given values of MG, NG, �C, dQ and dG, it is possible 
to calculate range of the input modulation within which the 
actual modulation will fall. 

Experimental Simulation 

As gamma correction for discrete systems is a mathematical 
process, its implementation in the modality is noiseless. 
Because of this, experimental testing of the technique may 
be performed using a simulation. 

Arbitrary values were chosen to represent maxima and 
minima in the original signal, Q, at bitdepths of 12, 10 and 8 
bits. 

Equation 5 was used to apply various values of gamma 
correction and sub-sampling to create an output signal. The 
bitdepths osen represent pical alues for digital 
technology at present [12, page 33]. 

Using the gamma corrected maxima and minima, the 
range containing the input modulation was calculated with 
Equations 23 and 24. The actual modulation is then 
compared with the calculated range. 

Results of the simulation are presented in Figures 4 to 
9. All graphs are plotted with respect to quantized input 
signal amplitude as this is a primary variable which 

determines the severity of the effect of the gamma 
correction. 

Figures 4 and 5 represent the effect typical of gamma 
correction performed for output to a CRT. Assuming linear 
tone reproduction of the acquisition device, �A=1, and a 
target gamma, �T, of unity, the gamma correction required, 
�C, is 0.45.11 The input and output bitdepth is 8 bits. 
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Figure 4. Predicted modulation range for a signal with gamma 
correction of 0.45 applied. The input and output bitdepths are 
both 8 bits. 
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Figure 5. An enlarged portion of Figure 7. 
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Figure 6.The predicted modulation range for a signal with gamma 
correction of 0.1 applied. The input and output bitdepth is 8 bits. 
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Figure 7. As for Figure 9 with gamma correction of 3 applied. 
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Figure 8. Predicted modulation range for a signal gamma 
corrected with a value of �

C=3. The curves show the effect of 
changing input bitdepth. Both target and acquisition gamma is 
assumed to be unity. The output bitdepth is 8 bits. 
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Figure 9. As for Figure 11, though changing the output bitdepth. 
The input bitdepth is 12 bits. 

 
 The figures initially demonstrate that gamma correction 
significantly affects the modulation of a signal. This is 
demonstrated by the difference between the curves for the 
actual and gamma corrected modulation. Transformation of 
exposures for discrete systems into linear input units is 
therefore vital. 

Using values of the gamma corrected maxima and 
minima, Equations 23 and 24 successfully calculate a range 
which contains the actual input modulation. Figure 5 
verifies that the input modulation is contained within the 

range at all points. The modulation range may be seen to be 
small in this instance and has a maximum value of •±0.01. 
Gamma correction is therefore not expected to significantly 
affect the determination of MTF for discrete systems that 
are gamma corrected for output to CRT, provided that the 
signal is transformed into linear input units. 

The calculated modulation range is seen to be non-
symmetric about the ual modulation, ike hat 
calculated for the effects of quantization in previous work.11 
It is therefore not possible to represent the effect of gamma 
correction as the input modulation plus and minus an error 
term as in Reference 13. 

Figures 6 and 7 show the modulation range calculated 
for severe values of gamma correction, 0.1 and 3 
respectively. The input and output bitdepths remain as 8 
bits, also the target and acquisition values of gamma are 
unity. 
 The figures illustrate that as the value of the gamma 
correction is more extreme, the gamma corrected signal 
modulation deviates increasingly from the actual signal 
modulation. The more severe values of gamma correction 
cause more levels to be lost in the gamma corrected signal. 
This results in prediction of an increased range in which the 
actual modulation may lie. 

The low value of gamma correction in Figure 6 results 
a greater predicted range for input with low modulation. 
The high value of gamma correction in Figure 7 results in 
increased predicted range for input signals with large 
modulation. This is unusual as sources of noise regularly 
affect signals with low modulation more severely than those 
with increased modulation. Large modulation normally 
results in increased signal to noise ratios for most 
processes.10 

An explanation for this effect may be that gamma 
correction and the effect of integer mathematics is not an 
ergodic process. The results are calculated using values of 
the corrected signal and hence noise and signal components 
may not be separated. 

Generally, the effect of high values of gamma 
correction may be seen to be more severe than that for low 
values. The predicted range is again shown to be non-
symmetric in both figures. The actual input modulation 
continues to falls within the calculated range consistently. 

Figures 8 and 9 demonstrate the effect of changing 
input and output bitdepths. It is clearly seen that changing 
the input bit depth of the signal has relatively little effect 
upon the predicted modulation range. Conversely, changing 
the output bitdepth has a more prominent effect. It may be 
seen that as the output bitdepth is increased, the predicted 
modulation range is smaller indicating that less errors will 
occur in measurements. 

Conclusion 

Gamma correction causes loss of available pixel values in 
discrete systems. This loss of values in turn causes error in 
MTF determination. 
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A technique has been shown that predicts the range of 
input modulation possible from gamma corrected maxima 
and minima. The limits have been shown to successfully 
contain the input value for a wide range of circumstances 
including severe gamma correction. 
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